0 votes
in Army/Defence by

Peptides vs proteins - what's the difference?

If you’re looking for the difference between peptides and proteins, the short answer is ‘size’.

Both peptides and proteins are made up of strings of the body’s basic building blocks – amino acids – and held together by peptide bonds. In basic terms, the difference is that peptides are made up of smaller chains of amino acids than proteins.

But the definition, and the way scientists use each term, is a little loose. As a general rule, a peptide contains two or more amino acids. And just to make it a little more complicated, you will often hear scientists refer to polypeptides – a chain of 10 or more amino acids.

Dr Mark Blaskovich from the Institute for Molecular Bioscience (IMB) at The University of Queensland in Australia says approximately 50-100 amino acids is the cut-off between a peptide and a protein. But most peptides found in the human body are much shorter than that – chains of around 20 amino acids.

There’s also an important variant of peptide called the cyclotide. As with the peptide and the protein, the cyclotide is also comprised of a string of amino acids, but unlike the others, the ends of a cyclotide are joined together to form a circle.

As we’ll discuss below, this structure is important in the manufacture of therapeutic peptide-based drugs.

As for proteins, biochemists generally reserve the term for large peptide molecules, which can either be one long chain of 100 or more amino acids – a ‘complex polypeptide’, if you like – or they can be comprised of several amino acid chains joined together.

Haemoglobin, found in your red blood cells and essential for carrying oxygen, is such a protein. It’s made up of four different amino acid chains – two with 141 amino acids each and two with 146 amino acids each.

Why peptides are the ‘next big thing’ in medical research

Biochemists are excited by the possibilities presented by peptides and proteins as pharmaceuticals because they so often mimic exactly the behaviour of a natural ligand – the substance that interacts with the receptor on an enzyme or cell to cause a biological process.

This gives peptide drugs the potential to be more precisely targeted, with fewer side effects than small-molecule drugs.

Within the body, there are lot of different hormones that react with cells and trigger different biological processes. Often these are peptides, either cyclic versions or straight, linear ones.

And then there’s the matter of how fast that peptide breaks down, which causes some stability issues, but in terms of safety, can be a positive.

“We think peptides are the future of drugs for reasons of being more selective, more potent and potentially safer, because when a peptide eventually breaks down it just breaks down into amino acids, and amino acids are food, basically,” says Professor David Craik, who leads IMB’s Clive and Vera Ramaciotti Facility for Producing Pharmaceuticals in Plants.

There are also manufacturing considerations that make peptides attractive – their length allows them to be chemically synthesised, as opposed to proteins that are generally expressed in yeast or mammalian cells.

Defining Antiaging Nutraceuticals

The term antiaging can incorporate a broad range of nutraceutical possibilities. For the purpose of this article, let’s define antiaging nutraceuticals as those nutracentical ingredients that help to address health and wellness issues associated with aging. In this context, that would potentially include nutraceuticals that can positively impact the aging process itself as well as those that positively impact aspects of human physiology that tend to decline with age, such as joint health and cognitive health. Ahead, we touch on a few promising contenders.

The benefits of organic food

How your food is grown or raised can have a major impact on your mental and emotional health as well as the environment. Organic foods often have more beneficial nutrients, such as antioxidants, than their conventionally-grown counterparts and people with allergies to foods, chemicals, or preservatives may find their symptoms lessen or go away when they eat organic fruit and vegetable powder.

Organic produce contains fewer pesticides. Chemicals such as synthetic fungicides, herbicides, and insecticides are widely used in conventional agriculture and residues remain on (and in) the food we eat.

Organic food is often fresher because it doesn’t contain preservatives that make it last longer. Organic produce is sometimes (but not always, so watch where it is from) produced on smaller farms nearer to where it is sold.

Organic farming tends to be better for the environment. Organic farming practices may reduce pollution, conserve water, reduce soil erosion, increase soil fertility, and use less energy. Farming without synthetic pesticides is also better for nearby birds and animals as well as people who live close to farms.

Organically raised animals are NOT given antibiotics, growth hormones, or fed animal byproducts. Feeding livestock animal products increases the risk of mad cow disease (BSE) and the use of antibiotics can create antibiotic-resistant strains of bacteria. Organically-raised animals tend to be given more space to move around and access to the outdoors, which help to keep them healthy.

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Welcome to Rethink, where you can ask questions and receive answers from other members of the community. Most Useful Websites : Qurions.com
ADmax.store
ADmax buy sell App
hot-Shot video creator App
JOBScue.com
hotshot.world
----Help us to Grow----
Please Donate
Thanks to (Mr./Miss/Mrs.)
...